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ABSTRACT
Digitalization enables an ever-increasing opportunity to promote
resource conservation by providing timely consumption feedback
to individuals. Yet, in multi-person households, appliances and
fixtures are often shared, which makes it difficult to deliver person-
specific feedback for each user. In this paper, we tackle this problem
for household’s most energy-intensive day-to-day activity – show-
ering – by leveraging granular water consumption data. To this end,
we collected labeled time series data of 691 shower events from 28
individuals, defined features, implemented and adjusted several clas-
sifiers, and analyzed the feasibility of our identification approach.
Across all locations, the results – which were evaluated with strati-
fied five-fold cross validations – provide robust evidence that the
presented approach can indeed identify users reliably immediately
after the end of a shower event. More specifically, the classifier with
the best overall performance (Random Forest) achieved an average
accuracy of 83.2% even for the most challenging environment in
our field test (differentiating between five individuals in a company
shower) and reached an average accuracy of 98.8% for a two-person
household. Moreover, the approach requires only little training data
for a satisfactory performance.
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1 INTRODUCTION
With the ubiquity of digital technologies, more and more behavior
data about everyday activities become available. Driven by the
recent political aims to reduce the impact of climate change by
demand-side management, many approaches leveraged such data
to provide individuals with an understandable form of resource use
to promote behavioral change. In this context, feedback was shown
to be most effective in fostering resource conservation when it is
specific, delivered in real-time, and at the place of action (e.g., [7,
19]), which stresses the importance of digital technologies. Recent
research has shown that feedback can be effective even without
financial incentives and in the absence of selection effects (i.e., [20]).

In fact, in recent years a vivid research domain has developed to
make feedback more specific. For instance, many approaches have
been proposed that leverage electricity data from a single sensor
(e.g., a smart meter) to recognize the energy consumption of individ-
ual appliances. Strikingly, Google Scholar counts 2,580 papers for
the related term “energy disaggregation” of which 69% were pub-
lished in the past four years. In the same vein, several approaches
were proposed that allow monitoring of the water consumption at
the appliance and fixture level by using different types of sensors
and algorithms (e.g., [3, 11, 16]). Little research, however, has tried
to provide individuals at home with person-specific feedback on
their use of shared appliances or fixtures. Existing work is mostly
based on tracking of individuals within their home (e.g., [5, 15]),
which is most likely not feasible for a large-scale roll-out. Similarly,
periodically prompting individuals to log their everyday usage of
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shared appliances and fixtures is unlikely to work. Interestingly,
research in other domains has shown that individuals can be iden-
tified by behavioral data alone (e.g., [14, 21]), which indicates that
feedback systems can potentially automatically identify users for
person-specific feedback.

We add to the discussion an energy-intensive day-to-day activ-
ity where no personalization work has been published that relies
solely on consumption data: Showering. We target showering for
user identification for three reasons. First, a typical shower con-
sumes around 45 liters of water and 2.6 kWh of heat energy [19],
with a high carbon intensity due to the widespread usage of fossil
sources for hot water generation [8]. For comparison, the average
EU household uses 1 kWh a day for lighting [13]. Second, shower
installations in households are often shared by multiple persons,
thus resembling a natural setting to disaggregate water consump-
tion and to cost-effectively induce resource conservation. Lastly,
resource consumption in the shower varied substantially between
individuals of a previous study [19], which indicates the necessity
of user differentiation for personalized feedback strategies.

Although activity-specific real-time feedback on showering fos-
tered savings of 22% in a household setting (i.e., 0.46 kWh savings
per shower), the feedback has been given in a general manner and
it was not aligned with the individuals’ past consumption history,
personality and preferences [19]. By contrast, literature suggests
that feedback needs to be designed towards the individual to un-
leash its full potential ([6, 17, 18]). Similarly, due to the lack of user
identification, the feedback was bound to the place of action, thus,
not allowing for subsequent motivating elements (i.e., peer compar-
isons on a smartphone) or user-specific content (i.e., user-specific
conservation goals) in multi-person households. We believe that
such personalized feedback systems can enhance the existing con-
servation effects, however, it requires the ability to automatically
identify individuals, since asking users after each consumption
event for their identity is not convenient and not reliable: Although
we have explicitly requested this for the paper’s experiment, the
individuals in the private setting only indicated their identity for
35% of their showers.

2 IDENTIFICATION APPROACH
In order to evaluate the feasibility of user identification, we collected
ground truth data in five private households near Nuremberg (Ger-
many) with varying number of residents. To explore the limitations
of our approach, we additionally collected data in one company in
Zurich (Switzerland) where, according to the staff, more than 20
employees regularly use the company’s showers.

For the data collection, we deployed shower meters which mea-
sure water and energy consumption. Whenever water flows, the
current resource consumption state is communicated via Bluetooth
with a data granularity of approximately two samples per second.
Each data point contained aggregated measures (e.g., water used
until that measurement point) as well as current properties of the
shower (i.e., current temperature or flow rate). Due to this high data
resolution and associated storage limitation of the shower meters,
we additionally relied on Raspberry Pis collecting the measure-
ments live via Bluetooth from the shower meter and transmitting
them to our server infrastructure.

Besides collecting consumption data, we relied on the individ-
uals logging their usage of the shower. While the residents of the
households took notes in form of logbooks, the employees of the
company used a mobile app for this purpose. Both forms of logging
required the individuals to provide us with the combination of a
personal identifier and a timestamp. This information was needed
to match the respective recorded shower data with the personal
identifier for the creation of the ground truth data set. In the private
setting, only one shower installation was present and each logbook
entry had to be mapped to only one data source (shower meter),
whereas in the corporate setting several shower installations were
possibly used at the same time. Therefore, the participants in the
corporate setting had to indicate the shower installation they used
as well.

In order to identify individuals based on their shower usage, it
is necessary to pre-process the data (i.e., match the log entries to
the respective shower event), and to derive meaningful features
for high predictive power, which we outline in the following. We
derived 34 features from the granular data, which can be roughly
divided into three categories. The first category represents temporal
aspects of the shower (day of the week or time of the day) which
might help to distinguish individuals based on their daily routines
even when their showering behavior is similar. The second category
represents statistical measures (e.g., mean temperature, mean flow
rate, duration of the shower) which should relate to the shower
preferences of the individual. The third category contains more
advanced features that were extracted from the granular data (e.g.,
number of water flow stops per shower, a measure for the number
of temperature adjustments per shower).

3 EVALUATION
In this section, we present the results of our identification approach
and briefly discuss the relevance of training data to achieve a satis-
factory performance.

3.1 Evaluation setting
We approach the identification problem by using a set of standard
algorithms. For the supervised classification methods we consider
the white-box-methods Decision Tree (DT) and Lasso Logistic Re-
gression (LogReg) [9, 12], as well as the black-boxmethods Artificial
Neural Network (NN), Random Forest (RF) and Support Vector Ma-
chine (SVM) [2, 4, 22] using the R package “mlr” [1]. For each of
the shower meters, we define a separate classification problem for
two important reasons. First, the characteristics such as the flow
rate or the water heating system vary substantially among differ-
ent shower installations. Using one classification problem for all
the labeled showers would most likely bias the results: Instead of
learning consumption characteristics of individuals, it would prob-
ably just recognize the characteristics of the shower installation.
Second, the identification performance in a real-world residential
scenario would typically imply differentiating between a relatively
low number of individuals and not more than 25 individuals as in
the present study. Going for a single classification problem, there is
a higher chance that multiple individuals share the same consump-
tion habits (i.e., time of showering, temperature preference, number
of water flow stops), leading to an underestimated performance
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of the classifiers for a real-world scenario. Moreover, even though
the individuals in the corporate setting could have used different
shower installations from time to time, they used almost always
the same installation. As a consequence, the data set is also too
restricted to investigate whether we can identify users based on
the data from a different shower installation.

For all main results we have chosen a five-fold stratified cross
validation which splits the available data randomly in five mutually
exclusive sets. Furthermore, we have repeated the cross validation
ten times enabling us to analyze the stability of the identification.
We base the identification reliability on two performance metrics:
Accuracy (i.e., the proportion of correct predictions) and area under
the curve (AUC) adopted to multiclass problems as follows:

AU 1P =
1

c (c − 1)

c∑
j=1

c∑
k,j

p(j)AUC(j,k) (1)

where c is the number of classes, p(j) is the a priori distribution of
class j and AUC(j, k) is the AUC between the classes j and k [10].
In the following, when we describe the classifier performances in
terms of AUC, we refer to this multiclass definition.

Due to our five-fold stratified cross validation, we need at least
five observations per individual to estimate the AUC. As a conse-
quence, we limit the data set to individuals with at least five showers
(i.e., 28 individuals and 691 showers). To not introduce any selection
biases resulting from the evaluation of this subset of individuals, we
made additional robustness checks. Overall, the analysis is robust
in terms of accuracy and AUCwhen including again the individuals
with less than five log entries (when evaluating a cross validation
with less than five-folds).

3.2 Evaluation results
Figure 1 shows the mean accuracy and the mean AUC values of our
five classifiers across the different households and the corporate set-
ting. For the accuracy, we set as baseline theMajority class classifier
which maximizes performance by predicting the meter-specific user
with the most labelled showers. Applied on the data set, the Ma-
jority class classifier achieves values between 24.1% (Household 4)
and 58.3% (Household 1).

For all of the shower installations, the regular classifiers perform
better than the Majority class classifier, thus indicating that they
truly learned user-identifying patterns from the consumption data.
Strikingly, in the first household with two individuals, all the classi-
fiers reached an accuracy of at least 93.5% (NN), with a maximum of
98.8% (RF). Next, we analyze the results of household 4 with labelled
showers from five individuals. Similar to household 1, the classifiers
reach remarkable accuracy values with a maximum of 95.1% (RF).
Only the DT falls significantly in performance, but still achieves
satisfactory accuracy. By contrast, the performance in household 5
is slightly worse (minimum accuracy 56.2%, maximum accuracy
83.3%). With only 30.7% shower events as compared to household 4,
this potentially indicates the need for more training data to achieve
a similar performance level. Notably, our identification approach
works in the corporate setting similar as good as in the private
setting when comparing the performances of the regular classifiers
with those of the Majority class classifier. Finally, the analysis of
the AUC values indicates that the RF and the LogReg perform on
average the best.

Next, we analyze the relevance of training data to achieve sat-
isfactory results for user identification. In a real-world scenario,
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Figure 1: Performances of the classifiers. Error bars indicate the 95% confidence interval of the five-fold cross validations
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individuals are most likely not willing to label a lot of their showers
to get the system running. A requirement of the system is, thus, to
work with a few training instances per user.

To this end, we benchmark the classifiers by limiting artificially
their training set and determining subsequently their classification
performances. Surprisingly, this additional analysis indicates that
many classifiers perform well with little training data available.
More specifically, with only one training instances per individual,
the RF was already better than the Majority class classifier across
all shower installations. Still, we recommend collecting three to
four training instances per individual before applying the approach
in practice. Consequently, we provide evidence that such a system
can be deployed even when the individuals are not willing to log
many of their showers to setup the system.

4 CONCLUSION
In this paper we have presented and evaluated an approach that
leverages granular water consumption data in order to identify
users after an energy-intensive everyday activity (showering). Con-
sidering the performances across different settings, our approach
achieved very satisfying results: We have demonstrated that individ-
uals can be reliably detected after the end of a shower. For instance,
the RF classifier achieved an overall average accuracy of 90.8% in
the households, differentiating on average between 3.6 individuals.
In the corporate setting, it reached an overall average accuracy of
88.6%, differentiating on average between 4 individuals. The RF
classifier’s accuracy values were constantly much better than the
Majority class classifier. In addition, only very little training data is
needed to setup such a user identification system.

We have successfully developed an approach that makes it pos-
sible to identify consumers of hot water usage in the shower. The
results are promising and encourage future research in the domain
of feedback interventions. Due to advances in energy efficiency,
human behavior is an increasingly important factor in the end en-
ergy use. As a consequence, smart sensors are an important lever to
induce resource conservation by giving feedback on resource con-
sumption. Identifying users and providing personalized feedback
can serve as an additional way to enhance the individual curtail-
ment efforts in curbing CO2 emissions. Furthermore, it can enable
future services to increase comfort and help researchers to better
understand the behavior of individuals.
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